Chemical Equations

solid(s) liquid(l) gas(g)

aqueous(aq): dissolved in water

Balancing Chemical Equations by Inspection

\[\text{Mg(s)} \rightarrow \text{N}_2(g) \longrightarrow \text{Mg}_2\text{N}_2(s) \]

\[\text{C}_3\text{H}_8(l) + \text{O}_2(g) \rightarrow \text{CO}_2(g) + \text{H}_2\text{O}(g) \]

Combustion

Relative Atomic Masses

- **Relative Mass**: Not integer because:
 1. Naturally occurring isotopes
 2. \(p^+; n^0 \) mass not identical: 1.0073, 1.0087 (wrt to \(^{12}\text{C} \))
 3. \(E = mc^2 \); some mass converted to \(E \)

\[^{35}\text{Cl} = 75.555\% \text{ relative mass} = 34.96885 \]
\[^{37}\text{Cl} = 24.445\% \text{ relative mass} = 36.94739 \]

Weighted average:
\[
\frac{0.75555(34.96885) + 0.24445(36.94739)}{1} = 35.453
\]

Formula Weight (FW) = 35.453

Relative Atomic Masses

- **Relative masses; no units**

\[\text{H} \quad 1.008 \]
\[\text{C} \quad 12.011 \]

"Average" C atom = 12.011 x 1.008 x 10^-24 g
\((\frac{1}{12} \text{ mass } ^{12}\text{C} \text{ atom}) \)

Why The Mole?

\[\text{Br} \quad 35 \quad 80 \]
\[\text{Ca} \quad 20 \quad 40 \]

1 atom \(\text{Br} \) = \(_ \) x mass of 1 atom \(\text{Ca} \)
1 atom \(\text{Br} \) = same mass as 1 atom \(\text{Ca} \)
1 g \(\text{Br} \) = \(_ \) # of atoms as 1 g \(\text{Ca} \)
2 g \(\text{Br} \) = same # of atoms as 1 g \(\text{Ca} \)
80 g \(\text{Br} \) = same # of atoms as

Wilhelm Ostwald
German
1893

Amedeo Avogadro
Italian
1776 - 1856

Avogadro's Number: \(N_A \)

6.022 x 10^{23}

80 g Br = same # of atoms as
Unit for Formula Weight

(molar mass) \(\text{FW} = \frac{29}{63.546} \) g/mole

mass, in grams, that contains 1 mole

\(\text{FW Cu} = 63.546 \text{ g Cu per 1 mole Cu} = 63.546 \text{ g Cu}/1 \text{ mole Cu} = 63.546 \text{ g/mole} \)
do not use amu!

Formula Weight of Compounds

atom’s FW \(\Rightarrow \) compound’s FW (molecular/ionic)

\(\text{C}_4\text{H}_12\text{O}_6 \) \(\text{FW} = \)

\(\text{NaClO}_3 \) \(\text{FW} = \)

Percent Composition (by Weight) from Formula

copper(II) oxide \(\text{CuO} \)

\(-80\% \text{ Cu}, -20\% \text{ O} \)

\(\%X = \frac{\#X \times \text{FW}_X}{\text{FW}} \times 100 \)

\(\%\text{Cu} = \frac{1 \times 63.546 \text{ g/mole}}{79.545 \text{ g/mole}} \times 100 = 79.887\% \)

\(\%\text{O} = \frac{1 \times 15.999 \text{ g/mole}}{79.545 \text{ g/mole}} \times 100 = 20.113\% \)

Combustion Analysis

chemical composition of organic compounds \((\text{C}_x\text{H}_y\text{O}_z) \)

\(x \text{ CO}_2 + \frac{y}{2} \text{H}_2\text{O} \)

\(\frac{\%\text{H}}{2} + \frac{\%\text{C}}{4} + \%\text{O} \)

Stoichiometry

1. find a balanced equation
2. convert what you have (mass, concentration) to moles
3. use balanced equation to convert moles of what you have to moles of what you want: stoichiometry
4. answer question: mass, concentration, gas volume…

\(\text{C}_{15}\text{H}_{11}\text{I}_4\text{NO}_4 \)

mass from 100 mg NaI?