Download the experiments, as pdf files, the week before doing the lab.

COURSE OUTLINE:

<table>
<thead>
<tr>
<th>Week of</th>
<th>Experiment</th>
<th>Download</th>
<th>Pts.</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 11</td>
<td>Check-in, Laboratory Safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>January 18</td>
<td>Periodic Properties - Periodic Table and Simulation</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>January 25</td>
<td>Periodic Properties (Continued - Unknown)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>February 1</td>
<td>Introduction to Beer’s Law check the Spectronic 20 Movie</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>February 8</td>
<td>Excel Tutorial using Beer’s Law data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>February 15</td>
<td>Chemical Kinetics</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>February 22</td>
<td>Using Spectrophotometry to Determine Equilibrium Constants Formal typed lab report required</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>March 1</td>
<td>The Effect of Added Acid and Base on the pH of Buffer Solutions</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>March 8</td>
<td>No Lab (Spring Break)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>March 15</td>
<td>Neutralization Curves</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>March 22</td>
<td>Determining a Solubility Product Constant Formal typed lab report required</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>March 29</td>
<td>Oxidation-Reduction Reactions</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>April 5</td>
<td>Introduction to Electrochemistry and Effects of Concentration on Electrode Potentials (Nernst Equation)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>April 12</td>
<td>TBA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>April 19</td>
<td>TBA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INSTRUCTOR: Alan J. Jircitano
OFFICE: 33 Hammermill
Phone: 898-6400
INTERNET: e-mail: jircitano@psu.edu
web site: http://chemistry.bd.psu.edu/jircitano/
OFFICE HOURS: M 10 – 11, R 4 – 5, F 11 – 12 and by appointment
Data for each laboratory experiment is recorded in special laboratory notebooks which automatically makes copies. All data is collected in ink. Do not erase any errors made in data collection; just line through once and rewrite. **Each page must** include the following:

1. Experiment number.
2. Full title of experiment.
3. Date on which page was written on.
4. Student name.
5. Any partner(s) names (just on data pages).
6. "Chem 113, Section #" in the space provided.

Charts and graphs **must** have your name, date and experiment number printed (by the program) in the upper, righthand corner.

LAB REPORTS:

Each laboratory report (except for charts and graphs) will be handwritten, **legibly**, in your laboratory notebook. **Each section must be clearly labeled with the proper heading.** The laboratory report consists of:

Pre-Lab

The **original** copy of this part of the notebook will be submitted at the **beginning** of each lab period. This **preparation** for lab comprises one-fourth of your laboratory grade for that experiment.

During the lab, describe what you do (especially any deviations from the procedure in the handout), make observations and record data (well organized) in:

Data and Observations

These pages will be **initialed** by the instructor (after bin inspection) and **turned in** before you leave. Failure to have your bin inspected and your data pages initialed before leaving will result in a 5-point deduction from the laboratory report.

The final part of the report consists of:

Data Treatment and Conclusion

This will be turned in **at the start** of the next laboratory period after completing the lab.
Two of the experiments (noted in the course outline above) will require a formal typed lab report. The formal, typed lab reports will contain the following:

Purpose
Introduction
Data and Observations
Data Treatment and Discussion
Conclusion

The prelab assignment for these experiments will still be turned in at the start of the laboratory class.

All lab reports will be graded on neatness, **organization of material**, proper calculations (including significant figures and sample calculations), **proper graphing**, and quality of results.

LAB COURTESY:

Fifteen (15) points of your total grade is based on lab courtesy; considering such things as safety awareness, lab technique, behavior in the laboratory, **showing up to lab on time** and handing in labs on time.

CHEM 113 POLICIES:

1. Students must wear goggles in the laboratory at all times. Each time the instructor must remind a student to keep their goggles on, 5 points will be deducted from the lab courtesy total. When courtesy points have been used up, 5 points will be deducted from the lab report grade.

2. Be on time for lab. Constant tardiness will not be tolerated and will result in points deducted from the lab courtesy grade.

3. Check your glassware **bin before** the laboratory lecture and have any missing items replaced. At the end of the day, the bin will be returned to the same condition it was at the start of the laboratory. The bin will be checked by the instructor before returning it to the cabinet.

4. If you work with a partner on a particular experiment, you must still write up your own report (not a photocopy). Failure to do so will result in a grade of zero for that lab report.

5. Each day your lab report is late, 3 points will be deducted.

6. If you miss a laboratory class, you must have a University approved excuse. You are also required to show documentation to your instructor supporting your excuse. Failure to do either one of these will result in your not being able to make up the missed laboratory experiment.
7. Chem 111 is a prerequisite for this course. You **cannot** take this course unless you have credit for successfully completing Chem 111. You will be administratively dropped from this course if you have not completed these prerequisites unless you can demonstrate that you have taken a suitable substitute for the official prerequisites.

8. Instructors are asked (Senate rule 49-20) to provide a statement at the beginning of a course to "clarify the application of academic integrity to that course." The Senate Rule includes the following:

 Academic dishonesty includes, but is not limited to, cheating, plagiarizing, fabrication of information or citation, facilitating acts of academic dishonesty by others, having unauthorized possession of examinations, submitting work of another person or work previously used without informing the instructor, or tampering with the work of other students.

Read Senate rule 49-20: www.psu.edu/ufs/policies/47-00.html#49-20 and Behrend academic integrity guidelines: www.pserie.psu.edu/faculty/academics/integrity.htm. Any violation of academic integrity will receive academic and possibly disciplinary sanctions, including the possible awarding of an XF grade which is recorded on the transcript and states that failure of the course was due to an act of academic dishonesty. All acts of academic dishonesty are recorded so repeat offenders can be sanctioned accordingly.

GRADES:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Lab</td>
<td>90</td>
</tr>
<tr>
<td>Post-Lab</td>
<td>270</td>
</tr>
<tr>
<td>Lab Courtesy</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>375</td>
</tr>
</tbody>
</table>

- A 100 - 93%
- A– 90 - 92%
- B+ 87 - 89%
- B 83 - 86%
- B– 80 - 82%
- C+ 77 - 79%
- C 70 - 76%
- D 60 - 69%
- F 0 - 59%