Structure Factors and Fourier Synthesis

\(F_{hk\ell} \): function of reflection indices and atom positions in unit cell:

- all atoms scatter waves in \(h k \ell \) direction
- to develop equations that represent how waves add:

 - wave represented as vector moving with constant angular velocity:

 \[\mathbf{F} = f \cos \phi \]

 - Superposition of Waves

 - 2 waves of same frequency, but different phase (\(\delta \)), add to give a new wave, with a different amplitude and phase (from either) but the same frequency.

 \[x_1 = f_1 \cos \phi \quad x_2 = f_2 \cos (\phi + \delta) \]

 - trigometric identity

 \[F \cos (\phi + \alpha) = f_1 \cos \phi + f_2 \cos (\phi + \delta) \]

 \[F \cos \alpha \cos \phi - F \sin \alpha \sin \phi = (f_1 + f_2 \cos \delta) \cos \phi - f_2 \sin \delta \sin \phi \]

 \[x_F = x_1 + x_2 \]

 \[\phi = 0^\circ \quad F \cos \alpha = f_1 + f_2 \cos \delta \]

 \[\phi = 90^\circ \quad F \sin \alpha = f_2 \sin \delta \]
Superposition of Waves

\[F \cos \alpha = x = f_1 + f_2 \cos \delta \quad y = f_2 \sin \delta = F \sin \alpha \]

Superposition of Waves

\[x = f_1 \cos \delta_1 + f_2 \cos \delta_2 + f_3 \cos \delta_3 = \sum_{j=1}^{N} f_j \cos \delta_j \]
\[y = f_1 \sin \delta_1 + f_2 \sin \delta_2 + f_3 \sin \delta_3 = \sum_{j=1}^{N} f_j \sin \delta_j \]
\[|F| = (x^2 + y^2)^{1/2} = \left[\left(\sum_{j=1}^{N} f_j \cos \delta_j \right)^2 + \left(\sum_{j=1}^{N} f_j \sin \delta_j \right)^2 \right]^{1/2} \]
\[\alpha = \tan^{-1} \left(\frac{\sum_{j=1}^{N} f_j \sin \delta_j}{\sum_{j=1}^{N} f_j \cos \delta_j} \right) = \tan^{-1} \left(\frac{B}{A} \right) \]

Structure Factors

Obvious (from symbols) that structure factor, \(F_{hk\ell} \), results from \(N \) waves scattered in \((h k \ell)\) direction by \(N \) atoms in unit cell each wave has an amplitude \(\alpha \) to \(f_j \) (scattering factor) and a phase \(\delta_j \) with respect to the origin of unit cell to calculate \(F \)'s, need to know \(\delta \)'s in terms of atomic position and indices of reflection needed

Atom Phases

Consider \((1 0 0)\) Miller planes

\[\delta = 2\pi h x = 2\pi 1(0.5) \]

Atom at \((0.5, 0, 0)\) is exactly out of phase \((\pi)\) wrt atom at \((0, 0, 0)\)

\(\frac{1}{2}\) cycle

Atom at \((1, 0, 0)\) has a phase difference of \(2\pi\) wrt atom at \((0, 0, 0)\)

\((1\) cycle)
Atom Phases

Consider $(2 0 0)$ Miller planes

atom at $(0.25, 0, 0)$ is exactly out of phase (π) wrt atom at $(0, 0, 0)$

atom at $(1, 0, 0)$ has a phase difference of 4π wrt atom at $(0, 0, 0)$

Consider $(2 0 0)$ Miller planes

$\delta = 2\pi hx = 2\pi z(0.25)$

$[\text{expression to calculate structure factors from known } e^{-}\text{density}]$

to solve crystal structure, also need to perform inverse operation:

$e^{-}\text{density}$ is periodic, can be represented by Fourier Series

Jean Baptiste Joseph Fourier

French

(1768 - 1830)
Fourier Transform in Crystallography

structure factors \(F_{hk\ell} \)
electron density \(\rho (x, y, z) \)

Fourier Synthesis

Fourier Analysis

Fourier Synthesis

Fourier Synthesis

general form of 1-D Fourier series

\[
f(x) = \sum_{-\infty}^{\infty} C_n e^{2\pi i n x} = \sum_{-\infty}^{\infty} c_n e^{2\pi i n x}
\]

where \(h \) is an index of the term #

only \(\cos \) terms in box-car function \(\Rightarrow \) centrosymmetric:

\[
f(x) = f(-x)\cos(-x) = \cos(x)\sin(-x) = \cos(x)
\]

\[
f(x) = \sum_{-\infty}^{\infty} C_n \cos 2\pi nx
\]

\[
y = \frac{\pi}{4}
\]

\[
y = -\frac{1}{7} \cos (2\pi) 7x
\]

\[
y = -\frac{1}{9} \cos (2\pi) 9x
\]

\[
y = -\frac{1}{11} \cos (2\pi) 11x
\]

\[
y = \frac{1}{13} \cos (2\pi) 13x
\]
Fourier Synthesis
\[y = \cos(2\pi x) \]

Fourier Synthesis
\[y = \frac{-1}{3} \cos(2\pi 3x) \]

Fourier Synthesis
\[y = \frac{1}{5} \cos(2\pi 5x) \]

Fourier Synthesis
\[y = \frac{-1}{7} \cos(2\pi 7x) \]

Fourier Synthesis
\[y = \frac{1}{9} \cos(2\pi 9x) \]

Fourier Synthesis
\[y = \frac{-1}{11} \cos(2\pi 11x) \]
Fourier Synthesis

\[y = \frac{1}{13} \cos(2\pi 13x) \]
Fourier Synthesis

3-D periodic density in a crystal could be represented by:

\[\rho(x, y, z) = \sum_{h'k'\ell'} |F_{hk\ell}| e^{-2\pi i (hx + ky + \ell z - \alpha_{hk\ell})} \]

Finally: expanding exponential into \(\cos \) and \(\sin \) terms and assuming Friedel’s Law (\(\sin \) cancels for Friedel pairs):

\[\rho(x, y, z) = \frac{1}{V} \sum_{h} \sum_{k} \sum_{\ell} |F_{hk\ell}| \cos 2\pi (hx + ky + \ell z - \alpha_{hk\ell}) \]
Structure Factors: 1-D Example – 2 atoms

\[a = 10.0 \text{ Å} \]

\[x_c = 0.185 \quad 0.815 = x_c \]

\[x_c \] (centrosymmetric)

\[F_{\text{calc}} = \sum f_j e^{2\pi i h x_j} \]

\[F_b = \sum f_j e^{2\pi i h x_j} \]

\[F_x = \frac{\sum f_j e^{2\pi i h x_j}}{\sum f_j e^{2\pi i h x_j}} \]

scattering power (in direction of \(h \))

\[\cos(-x) = \cos(x) \]

\[\sin(-x) = -\sin(x) \]

\[\alpha = \tan^{-1}\left(\frac{\sum f_j \sin x_j}{\sum f_j \cos x_j}\right) \]

\[\alpha = 0 \text{ or } \pi \]

sign of \(\pm \) or on \(F_b \)

\[F_b = 2f_c \cos 2\pi x_c \]

\[x_c = 0.185 \]

Electron Density: 1-D Example – 2 atoms

a Fourier synthesis on \(F_b \) should give the structure:

\[\rho(x) = \frac{1}{L} \sum_{h} F_h e^{-2\pi i h x} \]

\[\rho(x) = \frac{1}{L} \sum_{h} F_h \cos 2\pi hx - i \sin 2\pi hx \]

since \(F_b = F_{\text{even}} \)

\[\rho(x) = \frac{1}{L} \sum_{h} F_h \cos 2\pi hx - i \sin 2\pi hx \]

Friedel’s Law

\[\rho(x) = \frac{1}{L} \sum_{h} F_h \cos 2\pi hx + F_{-h} + \sum_{h} F_h \cos 2\pi hx - i \sin 2\pi hx \]

Scattering Factor: \(f_c \)

\[\sin \theta/\lambda = 1/2d = h/2a \]

\[h = \pm 1 \]

\[d = 10.0 \text{ Å} \]

\[\sin \theta/\lambda = 0.050 \]

\[h = \pm 2 \]

\[d = 5.00 \text{ Å} \]

\[\sin \theta/\lambda = 0.100 \]

\[h = \pm 3 \]

\[d = 3.33 \text{ Å} \]

\[\sin \theta/\lambda = 0.150 \]
Electron Density: 1-D Example – 2 atoms

\[\rho(x) = \frac{1}{L} \sum_{h} \left[F_{h} \cos(2\pi hx - i \sin(2\pi hx)) + F_{0} + \sum_{h} F_{h} \cos(2\pi hx - i \sin(2\pi hx)) \right] \]

since: \[\cos(-x) = \cos(x) \]
\[\sin(-x) = -\sin(x) \]

\[\rho(x) = \frac{1}{L} \left(F_{0} + 2 \sum_{h} F_{h} \cos(2\pi hx) \right) \]
\[F_{0} = \text{total e}^{-} \text{ in unit cell} \]
$F_1 \cos 2\pi hx$

$F_2 \cos 2\pi hx$

$F_3 \cos 2\pi hx$

$F_4 \cos 2\pi hx$

$F_5 \cos 2\pi hx$

$F_6 \cos 2\pi hx$

$F_7 \cos 2\pi hx$

$F_8 \cos 2\pi hx$

$F_9 \cos 2\pi hx$

$F_{10} \cos 2\pi hx$

$F_{11} \cos 2\pi hx$

$F_{12} \cos 2\pi hx$
\[F_{12} \cos 2\pi hx \]

\[(2\sum F_h \cos 2\pi hx) / 10 \text{ for } h = 1 - 2 \]

fractional coordinate - x

\[(2\sum F_h \cos 2\pi hx) / 10 \text{ for } h = 1 - 3 \]

fractional coordinate - x

\[(2\sum F_h \cos 2\pi hx) / 10 \text{ for } h = 1 - 4 \]

fractional coordinate - x

\[(2\sum F_h \cos 2\pi hx) / 10 \text{ for } h = 1 - 5 \]

fractional coordinate - x

\[(2\sum F_h \cos 2\pi hx) / 10 \text{ for } h = 1 - 6 \]

fractional coordinate - x
3-D Structure

The 3-D calculation of $p(x, y, z)$ is called:

- Fourier synthesis
- Fourier map
- e$^{-}$ density map

3-D Electron Density

Note ripples around the atom (Au) because of finite data

Systematic Absences

$$F_{\text{abs}} = \sum f_{j} e^{2\pi i (hj + kj + lj)}$$

$$F_{\text{abs}} = \sum f_{m} \sum \left[e^{2\pi i (hx + ky + lx + 0m)} \right]$$
$m = \# \text{ asym units}$
$n = \text{ atoms in asym unit}$

$$G_{\text{abs}} = e^{2\pi i (hx + ky + lx)}$$

Example: consider 2 atoms related by 2-fold screw axis along b:

- x, y, z
- $x, y + \frac{1}{2}, z$

$$G_{\text{abs}} = e^{2\pi i (hx + ky + lj + \frac{1}{2}l)} + e^{2\pi i (hx - ky - \frac{1}{2}l)}$$

$$G_{\text{abs}} = e^{2\pi i (hx + ky + lj + \frac{1}{2}l)} + e^{2\pi i (hx - ky - \frac{1}{2}l)} + e^{2\pi i (hx + ky + \frac{1}{2}l)} + e^{2\pi i (hx - ky - \frac{1}{2}l)}$$

Looking at 0 k 0 reflections:

- $G_{\text{abs}} = e^{2\pi i (1 + e^{2\pi i})}$
- $G_{\text{abs}} = 2 e^{2\pi i 0}$ for $k = 2n$ (even)
- $G_{\text{abs}} = 0$ for $k = 2n + 1$ (odd)